Automatic Extraction of Briefing Templates

Dipanjan Das, Mohit Kumar and Alexander I. Rudnicky

Language Technologies Institute
Carnegie Mellon University

{dipanjan, mohitkum, air}@cs.cmu.edu
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Domain entities labeled

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Reiter et al., 2005
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

Equivalent sentences have very similar surface forms!

Reiter et al., 2005
Introduction

• Briefing generation from non-textual events
 • medical reports
 • weekly class project reports
 • weather reports
 • traffic reports
 •
Introduction

Weather reports: examples

A warm front from Iceland to northern Scotland will move SE across the northern North Sea today and tomorrow.

A ridge from the British Isles to Iceland will move NE across the North Sea today.

[PRESSURE_ENTITY] from [LOCATION] to [LOCATION] will move [DIRECTION] across [LOCATION] [TIME].
Introduction

• The task of closed domain briefing generation
• Aggregation of information from data
• Filling up templates
Introduction

• The task of closed domain briefing generation
• Aggregation of information from data
• Filling up templates

Often manually designed
Introduction

• The task of closed domain briefing generation

• Aggregation of information from data

• Filling up templates

Our focus: automatic creation from human briefings
Outline

• Introduction

• Related Work

• Data

• Approaches

• Results

• Conclusion
Related Work

- In evaluations like MUC and ACE
 - template based summarization systems
 - hand engineered templates
 - focus on slot filling, rather than template creation
Related Work

• Collier (1998) proposed MUC type template extraction
 • relied on identification of statistically significant words
 • discovery of common subject-verb-object patterns
Related Work

• Filatova et al. (2006) improve the paradigm
 • identification of most common verbs in the corpus
 • alignment of similar subtrees for each verb
 • however, long distance dependencies of verbs not examined
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Data

- Weather Forecasts
- Corpus containing human written reports
 - natural language summaries of computer data
- Reiter et al. (2005)
- Regularity in sentence structure
 - generalizable to traffic reports, medical reports, student class reports
Data

- 3262 sentences
 - 3000 for template extraction
 - 262 for testing coverage of templates
Preprocessing

• ASSERT toolkit (Pradhan et al., 2004)

 • tags each sentence with semantic roles for each verb

 • produces a phrase structure tree as a byproduct (Charniak, 2001)
Preprocessing

- Semantic role tagging
- BaseNP recognition
- Domain Entity tagging
Preprocessing

A low over the Norwegian Sea will move North and weaken

[ARG0 A low over the Norwegian Sea] [ARGM-MOD will] [TARGET move] [ARGM-DIR North] and weaken

[ARG0 A low over the Norwegian Sea] [ARGM-MOD will] move North and [TARGET weaken]
Preprocessing

A low over the Norwegian Sea will move North and weaken
Preprocessing

ARGO

NP

ARGM-MOD

NP

VP

ARGM-DIR

A low over the Norwegian Sea will move North and weaken

TARGET

Das, Kumar and Rudnicky
A low over the Norwegian Sea will move North and weaken
A low over the Norwegian Sea will move North and weaken.
A low over the Norwegian Sea will move North and weaken
Preprocessing

- Domain entity tagging
 - Manually engineered module
 - < 1000 vocabulary for content words
 - Often, entities form a closed list
 - e.g. DIRECTION – North, South...
 - 13 such entity types
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Overall Approach

• Clustering of sentences in corpus
 • sentences conveying similar information
 • instantiation of the same template

• Extraction of templates from each cluster
Approaches

• Two types of clustering approaches
 • Semantic role labeling (SRL) approach
 • ROUGE based approach
SRL Approach

• Advantages:
 • complicated sentences broken down into set of propositions
 • propositions better generalizable units across a corpus
 • long distance dependencies of constituents with verbs are modeled
 • for each verb, sentences with the same semantic roles convey similar meaning
SRL Approach

- Foreword
 - Each sentence is analyzed by ASSERT to produce a set of propositions
 - Clustering proceeds on the set of all propositions
SRL Approach

• Three stages of clustering
• Verb based clustering
• Semantic role based clustering
• Clustering based on syntax/semantics of roles
SRL Approach

• Verb based clustering
 • First, verbs in the corpus are clustered together using Wordnet
 • Propositions with the same verb type are grouped in the same cluster
 • 82 such clusters produced for 6632 propositions
SRL Approach

• Semantic role based clustering
 • For each verb cluster
 • all propositions with the exact semantic role sequences are further grouped
SRL Approach

Example:

[ARG0 A low over the Norwegian Sea] [ARGM-MOD will] [TARGET move] [ARGM-DIR North] and weaken

[ARG0 A high pressure area] [ARGM-MOD will] [TARGET move] [ARGM-DIR southwestwards] and build on Sunday

• Clusters with only one proposition are eliminated
• 33 verb type clusters with several sub-clusters each are produced
SRL Approach

• Looking inside semantic roles

• For propositions having the same verb and same sequence of semantic roles

• individual roles are examined to find out matching structures
A low over the Norwegian Sea

A frontal trough across Scotland
SRL Approach
SRL Approach

Matching structure

A low over the Norwegian Sea

A frontal trough across Scotland
SRL Approach

• Thus, for each role
 • Reduction of parse structure to sequence of POS tags and domain entity tags
 • Clustering of roles having exact same sequence of tags
 • Concatenation of role sequence tags produce final templates
 • 209 templates produced
ROUGE based Approach

• ROUGE: de facto standard for evaluation of text summaries (Lin, 2004)
 • Comparison of machine summary with a set of reference summaries
 • Token co-occurrence statistics based measure
 • Weighted longest common subsequence (WLCS) a useful variation

• Advantages
 • Robust metric
 • Parsing independent
 • Generalizable across domains
Overview

- Preprocessing
- Abstracted Sentences
- Cluster
- Align
- Longest Common Subsequence based
- ROUGE based
- Templates
ROUGE based Approach

• Preprocessing
 • Each sentence in the corpus was converted to a base NP and domain entity tagged form

 A low over the Norwegian Sea will move North and weaken

• Clustering
 • Distance metric: ROUGE-WLCS score of the abstracted sentences
 • an indication of how related they are
ROUGE based Approach

• Unsupervised Clustering
 • Hierarchical clustering performed using the scores
 • However, resulting clusters were not coherent
 • Classical parameter estimation problem
ROUGE based Approach

- **Non-parametric Unsupervised Clustering**
 - Cross-association based approach (Chakrabarti et al., 2004)
 - Based on boolean similarity matrices
 - thresholding of ROUGE scores
 - poor performance; incoherent clusters
 - MDL principle did not work for this data
ROUGE based Approach

- Deterministic Clustering
 - Underlying intuition
 - Sentences $X_{1..n}$ that are similar to any other sentence Y_i should be in the same cluster
 - X_j and X_k may not be similar to each other
 - Connected components in the similarity matrix are discovered to get individual clusters
ROUGE based Approach

- *Deterministic Clustering*
 - Original similarity metric retrieved incoherent clusters
 - To make the similarity metric more interpretable
 - ROUGE-WLCS was factored into precision and recall components
 - High precision match essential in the domain
 - Recall too becomes important to match similar length sentences
 - However, individual thresholding of the measures gave better clustering
ROUGE based Approach

• The grouping produced 149 clusters
• For each cluster, the longest common subsequence was computed to give the template
• 149 templates were produced
Templates

Examples:

PRESSURE_ENTITY expected over LOCATION by_0.5/on_0.5 DAY

PRESSURE_ENTITY to DIRECTION of LOCATION will drift slowly

WAVE will run_0.5/move_0.5 DIRECTION then DIRECTION

Associated PRESSURE_ENTITY will move DIRECTION across LOCATION TIME
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Results

• Evaluation Scheme
 • no standard evaluation metric
 • adoption of both subjective and automatic measures
Results

\[
\text{precision} = \frac{\text{number of domain relevant templates}}{\text{total number of extracted templates}}
\]

- subjective measure
- three human subjects were asked to mark each template as
 - domain relevant or not
 - grammatical or not
Results

• Recall

 • automatic metric

 • Preprocessed test set
 • domain entity and baseNP tagged

 • ROUGE-WLCS score between each preprocessed sentence and valid templates

 • At various precision thresholds, recall is measured
Results

• Results: SRL Approach
 • overall inter-rater agreement
 • $\kappa = 0.69$.
 • substantial agreement
• Overall precision: 84.21%
• 47.47% of irrelevant templates marked ungrammatical
• Results: SRL Approach
 • 30% near exact match at 0.9 ROUGE-WLCS score
 • For 0.6 precision, recall is encouraging 81%
Results

• ROUGE based approach

• At $\kappa = 0.79$, precision: 76.3%

• 96.7% of the irrelevant templates were marked ungrammatical

• simple errors in syntax leading to poor precision
Results

- ROUGE based approach
 - Error recovery module that strips leading and trailing prepositions
 - Boost of precision to 80.98%
 - $\kappa = 1$
Results

- **ROUGE** based approach
 - For high precision points, recall is low
 - however, the surface form extracted is richer than the SRL approach
 - exact match is infeasible
Outline

• Introduction
• Related Work
• Data
• Approaches
• Results
• Conclusion
Conclusion

• High precision values for both approaches

• SRL approach identifies more generalizable units containing one predicate

• ROUGE approach finds richer templates

• Future directions

 • Merger of the two methods

 • New domains
Questions?